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Abstract

Specific forms for both the Gibb's and complementary dissipation potentials
are chosen such that a complete (i.e., fully associative) potential based multiaxial,
nonisothermal unified viscoplastic model is obtained. This model possess one ten-
sorial internal state variable (that is, associated with dislocation substructure) and
an evolutionary law that has nonlinear kinematic hardening and both thermal and
strain induced recovery mechanisms. A unique aspect of the present model is the
inclusion of nonlinear hardening through the use of a compliance operator, derived
from the Gibb's potential, in the evolution law for the back stress. This nonlinear
tensorial operator is significant in that it allows both the flow and evolutionary
laws to be fully associative (and therefore easily integrated), greatly influences
the multiaxial response under non-proportional loading paths, and in the case of
nonisothermal histories, introduces an instantaneous thermal softening mechanism
proportional to the rate of change in temperature. In addition to this nonlinear
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compliance operator, a new consistent, potential preserving, internal strain un-
loading criterion has been introduced to prevent abnormalities in the predicted
stress-strain curves, which are present with nonlinear hardening formulations, dur-
ing unloading and reversed loading of the external variables. The specific model
proposed is characterized for a representative titanium alloy commonly used as the
matrix material in SiC fiber reinforced composites, i.e., TIMETAL 21S. Verification
of the proposed model is shown using "specialized" non-standard isothermal and
thermomechanical deformation tests.

Keywords: viscoplasticity, nonlinear hardening, TIMETAL 21S, nonisothermal,
deformation, multiaxial, correlations, predictions

1 Nomenclature
Invariants
Q complementary dissipation potential
(D Gibb's complementary potential
F Bingham-Prager threshold function
G normalized second invariant function
J2 second invariant of effective deviatoric stress tensor
12 second invariant of internal deviatoric stress tensor
Hl invariant material function

Stresses

a=i Cauchy stress tensor
St, deviatoric stress tensor
Et; effective deviatoric stress tensor
a,y internal state variables (stress-like)
a te internal (or back) stress tensor
a=j deviatoric internal stress tensor
r, n, drag stress and reference drag stress
Y(T) yield stress

Strains
e;j , E ̂ , ER, Eta	 total, inelastic, reversable, and thermal strain tensors, respectively
Ac	 conjugate internal state variables (displacement-like
Az;	 internal strain tensor
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Material Parameters
6£ (T) , 6,.9 (T)	 dynamic thermal recovery operator
C=;kl (T), E=;k,(T), M=, (T)	 elastic compliance, stifEness and thermal expansion tensor, respectively
Bo(T), B l , R.	 hardening and thermal recovery material parameters
µ(T)	 material parameter associated with the viscosity of the material
O(T)	 denotes the extent of strain induced recovery
n, p, q	 material exponents
g(G), f (F)	 material functions
E(a=,, T), M(a.y , T), z(T)	 material functions

mean coefficient of thermal expansion(CTE), instanteous CTE,
71 ' 77tan' 

E	 Young's modulus, respectively

Miscellaneous
T, To	 current and reference temperature, respectively

Qtjkl, (T), L=;k, (T)	 internal compliance and internal stiffness operators, respectively
SZ,	 Kronecker delta function

Macauley bracket
Hv[ ]	 Heaviside unit function
0	 time derivative (or rate) notation

2 Introduction
A number of Titanium Matrix Composite (TMC) systems are currently being researched
and evaluated for high temperature air frame and propulsion system applications. As a
result, numerous computational methodologies for predicting both deformation and life
for this class of materials are under development. An integral part of these methodologies
is an accurate and computationally efficient constitutive model for the metallic matrix
constituent. Furthermore, because of the proposed elevated operation temperatures for
which these systems are designed, the required constitutive models must account for both
time-dependent and time-independent deformations. To accomplish this we will employ
a recently developed complete potential based framework [1] utilizing internal state vari-
ables which was put forth for the derivation of reversible and irreversible constitutive
equations. This framework, and consequently the resulting constitutive model, is termed
complete because the existence of the total (integrated) form of the Gibb's complemen-
tary free energy and complementary dissipation potentials are assumed a priori. The
specific forms selected here for both the Gibb's and complementary dissipation poten-
tials result in a fully associative, multiaxial, nonisothermal, unified viscoplastic model
with nonlinear kinematic hardening. Thus this model constitutes one of many models
in the GVIPS (Generalized VIscoplasticity with Potential Structure) class of inelas-
tic constitutive equations which can be constructed using the generalized framework of
Arnold and Saleeb [1].

The particular unified GVIPS model of interest in this study possesses one tensorial
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internal state variable (i.e., the back or internal stress) that is associated with dislocation
substructure and an evolutionary law that has nonlinear kinematic hardening and both
thermal and strain induced recovery mechanisms. A unique aspect of the present model
is the inclusion of nonlinear hardening through the use of a compliance operator (derived
from the Gibb's potential) in the evolution law for the back stress. This nonlinear
tensorial operator is significant in that it allows both the flow and evolutionary laws to
be fully associative (and therefore easily integrated) [2], greatly influences the multiaxial
response under non-proportional loading paths [1],[3],[4], and in the case of nonisothermal
histories, introduces an instantaneous thermal softening mechanism proportional to the
rate of change in temperature. In addition to this nonlinear compliance operator, the
new [5] consistent, potential preserving, internal unloading criterion has been utilized
to prevent abnormalities in the predicted stress-strain curves, which are present with
nonlinear hardening formulations, during unloading and reversed loading.

The primary objective of the present study is to specify material functions and char-
acterize the associated material parameters for the nonisothermal extension of the previ-
ously proposed kinematic, isothermal GVIPS model [5] for TIMETAL 21S 1 , an advanced
titanium-based matrix commonly used in TMCs. Although both long and short term
behavior is important, capturing the short term (or transient) behavior and rate sensi-
tivity of the material is of primary importance given that the applications of interest are
primarily those involving material processing and structural issues in propulsion systems.

The paper begins by briefly summarizing the extension of the complete potential
structure to the nonisothermal domain, followed by a multiaxial statement of the newly
proposed nonisothermal GVIPS model. A discussion regarding the characterization
of the proposed model is then followed by numerous results illustrating the predictive
capabilities of the model.

3 Complete Potential Structure: Nonisothermal
Here, the basic thermodynamic framework put forth by Arnold and Saleeb [1] is extended
to the nonisothermal domain. Expressions for the Gibb's thermodynamic and the com-
plementary dissipation potential functions are assumed in terms of a number of state
and internal variables characterizing the changing internal structure of the material. For
conciseness, the discussion is limited to a case involving i) small deformations (in which
the initial state is assumed to be stress free), ii) an initially isotropic material, and iii)
the specialized (decoupled) potential framework discussed in [1]. A Cartesian coordi-
nate reference frame and index notation are utilized (repeated Roman subscripts imply
summation).

Given the Gibb's potential in the following form

-1) = (I (aij, a y , T, cI)	 (1)

1 TIMETAL 21S is a registered trademark of TIMET, Titanium Metals Corporation, Toronto, OH.
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and assuming a priori that the inelastic strain is an independent parameter (and not
an internal state variable), for example

.

	

	 - = E(aij ,T) — aijE j+ H (ary,T) — 3k71(T — To),	 (2)

an expression for the total strain rate can be obtained by differentiating, that is,

_ d —a^	 I	 — a2E (g j) bs; (	 ^i
dt ( aori; ) — V i;rs^rs + Ei; + aQ=,aT + 3 1 + &T ^T 

T	 (3)

as well as the rate of change of the conjugate internal variables (At),

 d —a^ _
.4t=
 dt ( aa£ ) —Q 7a7 + B£T	 (4)

where

Cijrs
a2 -1)	 — a2E(ai;,T)	 (5)

=
aaijaars 	 a0'i;9ars

and
—02 -1)	 —a2 H (a,,, T)	 (6)

Q£ry = a01£aa7 —	 acet%'

are the external and internal compliance operators, respectively, and

9 — 
—a2 ^ = —a2 H (a,y ,T)	 (7)

£ aa£aT	 aa£aT

is the change in the conjugate internal variable (A£) with temperature. Note the three
terms in equation (3) may then be identified from left to right as the reversible, irreversible
(inelastic), and thermal expansion components of the total strain rate, respectively. Thus,

R I	 T
eij = Eii + Eii 

+ Eii (8)

where

and

with

and

ER; = Cijrs6rrs	 (9)

E ^ = Mjj,	 (10)

'012

M=' 50'iioT	 aoijff + 3	
(11)

^^n = + &TOT
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denoting the instantaneous coefficient of thermal expansion, and E (the inelastic strain
rate) is defined separately using the concept of a complementary dissipation potential
0(a=;,ary,T).

Given

0 = Q (o=.i, a7, T)	 (12)

and using the Clausius-Duhem inequality; the flow law becomes

E1 = 
asp	

(13)
ao=;

and the evolutionary laws for the thermodynamic conjugate internal state variables are:

__ _ aQ
A	 (14)ry	

airy

Utilizing equation (4) the internal constitutive rate equations for the internal state vari-
ables are obtained,

(15)TJ

where

_2	 -1
Lryc _ [QryC] 1 = 1,9acary	 (16)

Thus, equations (13) and (14) represent the flow and evolutionary laws, for an assumed
0 = Q(aij , ary,T), and equation (15) the internal constitutive rate equations, given a
Gibb's potential ^P, wherein both potentials are directly linked through the internal state
variables ay.

4 Viscoplastic Constitutive Model
A complete multiaxial statement of a GVIPS model can be derived by using the above
framework, given a specific form for both the Gibb's potential, (b, and the complementary
dissipation potential, 0. Form invariance (objectivity) of these potentials, and material
symmetry considerations requires that they depend only on certain invariants of their
respective tensorial arguments (i.e., an integrity basis [6] ). In the spirit of von Mises and
because of the deviatoric nature of inelastic deformation, only the quadratic invariant
will be considered at this time in specifying the dissipation potential. Similarly, only
the linear elastic strain energy contribution will be considered in specifying the Gibb's
potential, with the internal state groupings being functions of the respective quadratic
invariants. Finally, although equation (12) indicates that an unlimited number of internal
state variables can be specified, here our attention will be restricted to a GVIPS model
with a single independent, evolving, internal state variable. This internal state variable,
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aid , is taken to be a second order symmetric traceless tensor that represents the internal
(or back) stress associated with dislocation substructure. Two additional scalar state
variables associated with dislocation density are considered. One representing the drag
strength (n) is taken to be temperature dependent and yet non-evolving with respect
to plastic work; whereas, the other, a yield stress (Y), is uniquely assumed to implicitly
evolve with internal stress over a specified temperature range.

Consequently, the Gibb's potential may be written as

(I _ — 2Crskl (T)0,s0'kl — O'i;E + Hl(G , T) — 3kq(T — To)	 (17)

and the complementary dissipation potential as

Q = µ(T) f f (F(T))dF + R,(T)Bo(T) lg(G)dG 	 (18)

where

F(T) _ ^r.(T) —Y(T)} 	 (19)

Y(T) = C1 —,3(T)VG--) 	 (20)

	

G = 12 	 (21)
Ko

H1 (G) _ —Bo(T)(G + B 1 Gp )	 (22)

3	
(23)I2 = 2 a=^ aid

3	
(24)J2 = 2 Eij Eij

Eij = Sij — aij	 (25)

	

1	 (26)Sij = ^ij — 3^kkbij

ai; = aii — I akkki .	(27)

and no = r.(To) where To is the reference temperature.
Note that in the preceding expression for the dissipation potential, the stress depen-

dence, both external and internal, enters through the scalar functions F and G in the
form of effective (Eij ) and internal (aid ) deviatoric stresses, respectively. Furthermore,
the function F acts like a threshold surface, since when F < 0, no inelastic strain can oc-
cur. Clearly, this threshold value is dictated by the magnitude of both the drag strength
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(n) and yield stress (Y). A unique aspect of this model is that the internal variable repre-
senting the yield stress is specifically taken as a special scaled function of the back stress
and drag strength. Consequently, this allows for 1) the model to possess features of a
model with three internal variables yet without any additional computational cost, and
2) the presence of an induced strain recovery term (as opposed to the common 'ad-hoc'
introduction of such terms) in the evolution of the back strain (i.e., the associated con-
jugate variable, A7 ) at lower temperatures. It is important to realize that the product
nY constitutes the radius of the initial threshold surface, thereby dictating from physical
arguments, that both Y and rc be always positive valued. Furthermore, given the spec-
ified form of Y in equation (20), it is clear that the material parameter ratio (,31r,) will
dictate the limit value (i.e., when Y=0) of the internal stress (a=;), or the cut-off limit
for dynamic recovery.

By selecting the preceding scalar functions, a general yet complete potential-based
model, with associated flow and evolutionary laws, can be constructed. The second
invariants , J2 and 12 , are also scaled for tension. These invariants could just as easily
have been scaled for shear by replacing the coefficient 3/2 with 1/2, and modifying the
definition of the magnitude of the inelastic strain rate that follows. Also, it should
be stated that the linear forms of F and Y in equations (19) and (20) were chosen in
order to allow algebraic manipulation and analytical solution of the resulting expressions
(e.g., inversion of the flow law), so as to ease the characterization stage of the model, as
discussed in [5].

Taking the appropriate derivatives of both (P and Q as indicated in equations (3)
through (16), one obtains the multiaxial nonisothermal specification particular to the
present constitutive model. Here the decomposition of the total strain rate is that of
equation (8), where the reversible mechanical and thermal strain rate is given by equa-
tions (9) and (10) and the irreversible (or inelastic) component is defined by the following
flow law:

E, = 2'j I E, I I ^J2	
if F> 0	 (28)

or

E= 0	 if F< 0	 (29)

where

I EI II = 2EI.EI. = µ(T)f(F'(T))	 (30)
3 =' _'	 rc (T )

The internal constitutive rate equation is always given by

	

di; = L=;rs [Ars —BrsT]	 (31)

while the evolutionary law for the back strain rate is given by
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EI 2 O(a ) ^( -)^1E ^^ ^Hv[Y]-
3R.(T)Bo(T) 9(G)akl

	 if a= Ei > 0 (32)Akl — kl	 j j — 

during internal loading and

'41s = Qrslm E"lmnp 
C

Enp —
 2

Q(
a r. (T)II E' 11 a Ilv[Y] — 3R«Bo9(G) anp I	 if aijEtj < 0

(33)
during internal unloading, as indicated by the inequality aijEij < 0 . The internal
stiffness operator is defined as

i	 ^2	
(	

3Bi(p — 1)Gp-2
Lijrs — [Qijrs] — 

3Bo(T)(1 + B1pGp-l) 1 41. — K2(1 + B,pGp-2 (6p — 5)) arsatj

(34)
with Iijrs = Bi,6js ;whereas, the dynamic thermal recovery operator, is defined as:

O's = 
aBo( ) 

(1 + B1pGp-1)3 ars	 (35)
0

Equation (33) constitutes a new consistent, potential preserving, internal unloading
criterion that prevents the classical abnormalities [7] in the cyclic response associated
with nonlinear hardening formulations, upon unloading and reversed loading of the ex-

ternal variables as described in [5]. Justification for this criterion stems from the work
of Orowan [8] and others, and has indicated that upon stress reversals dislocations are
remobilized and consequently rapid rearrangement of these dislocations is possible within
the wake of the previous load path. To describe this rapid motion of dislocation remobi-
lization (readjustment of internal stress) during material unloading we introduce distinct
regions within the state space in which the rate of the conjugate internal state variable
(internal strain) changes discontinuously. Currently, until more exploratory tests can be
performed to fully describe the affected regions of the state space, the internal (back)
strain rate during internal unloading is taken to be proportional to the back strain rate
during loading, through the product of the external stiffness and internal compliance
operators, see eq. (33). Thus, implying that the internal stress and strain during inter-
nal unloading are related by the external stiffness tensor. Furthermore, an examination
of the evolution of the conjugate of the internal stress (i.e., the internal strain, Aij),
clearly shows that equation (32) possesses, as typically assumed in the literature ( cf. [9]
through [13]), competitive mechanisms consisting of a hardening term (which accounts
for strengthening mechanisms) and two state recovery terms (which account for softening
mechanisms). The first state recovery term evolves with inelasticity; it is strain induced,
and is commonly called dynamic recovery; whereas, the second term, interchangeably
called static or thermal recovery, evolves with time and is thermally induced. The added

9



Constants Units TIMETAL 21S
Viscoplastic

K MPa 5.86
µ MPa/sec 5.52x10 -9

n - 3.3
Bo MPa 5.86x10-4

Bl - 0.05

P - 1.8
q - 1.35

Ra 1/sec 0.1x10-5
Q - 0.01

Elastic
E MPa 80,671
V - 0.365

Table 1: Isothermal material parameters for TIMETAL 21S at 650°C

flexibility provided by the dynamic recovery term is particularly advantageous at low
homologous temperatures where thermal recovery is inactive.

Finally, the above expressions are further specialized by assuming the nonlinearity of
inelasticity and the thermal recovery process to be represented by power law functions,
that is:

f (F) = F"	 (36)

g(G) = G4	 (37)

4.1 Characterization
Given the previously characterized isothermal GVIPS model [5] with the nine mate-
rial parameters corresponding to the reference temperature, To, of 650°C, the extension
of the model to the nonisothermal regime becomes straightforward with the primary
task being associated with the determination of the number and functional form of the
required temperature dependent parameters. Table 1 lists both the elastic (E and v)
and inelastic material parameters utilized in the isothermal model; that is the three pa-
rameters associated with the flow law (i.e., rc, µ, and n), the three with the nonlinear
hardening operator, (i.e., Bo, B l , and p), two with the internal thermal recovery term
(i.e., R, and q), and the one parameter with the strain induced (dynamic) recovery term
(i.e., (3). Considering the physical and mathematical significance (see eqs. (28)-(34)) of
the above material parameters one could easily argue that only five of the nine inelastic
parameters, in addition to the elastic stiffness and coefficient of thermal expansion, need
be functions of temperature. Clearly, since the magnitude of rc defines the onset of in-
elastic (or irreversible) behavior , i.e., through the threshold surface F, one would expect
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Ra

Parameters

Temperature

Figure 1: Schematic illustrating the temperature dependence of the elastic and inelastic
material parameters

its temperature dependence to be a decreasing function as temperature increases, as de-
picted schematically in Fig. 1. A similar temperature dependence would be expected
for the coefficient µ as it is related to the viscosity of the material, which is known to
significantly decrease as the temperature is increased. Two key assumptions that sim-
plify the nonisothermal characterization process considerably, are first, that the internal
(L;;kl) and external (Es;ki ) stifEness operators have a similar temperature dependence
(decreasing with increasing temperature, see Fig. 1). Consequently Bo is taken initially
to have the inverse temperature dependence of the Young's modulus E(T). Second, the
exponent n in the flow law is taken to be temperature independent, thus minimizing the
non-unique determination of the remaining material parameters µ and n, and ensuring
such theoretical niceties as convexity of the flow surface at all temperatures. Finally,
as 0 scales the dynamic recovery term (which is active at low homologous temperatures
and inactive at high homologous temperatures) and R,, scales the static (thermal) re-
covery term (which is inactive at low homologous temperatures and active at high) each
parameter must have the temperature dependence illustrated in Fig. 1.

As previously stated, the material of choice for characterizing the current nonisother-
mal GVIPS formulation is the titanium matrix alloy, TIMETAL 21S. This alloy was
selected due to the considerable attention it has received for use in TMCs with appli-
cation toward advanced airframe structures. TIMETAL 21S is a metastable 3-titanium
alloy with a nominal composition of Ti-15Mo-3Nb-3A1-0.2Si (wt. %). The coupon spec-
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imens used in this study were taken from "fiberless" panels. The fiberless panels were
fabricated by hot isostatic pressing 0.13mm thick TIMETAL 21S foils, so as to subject
the matrix material to an identical processing history as that seen by the matrix material
in the composited form. All specimens were subjected to a pre-test heat treatment, con-
sisting of an 8 hour soak in vacuum at 621°C, to stabilize the O+a microstructure of the
TIMETAL 21S. For further material, machining, and experimental details see Castelli et
al. [14]. All isothermal and nonisothermal tests addressed are uniaxial experiments, thus
implying that the multiaxial material constants are typically generalized from their uni-
axial counterparts. This need for generalization is precisely why a consistent multiaxial
theory, such as that developed from a potential formulation, is imperative. The available
tests for use in characterizing the current nonisothermal extension of the GVIPS model
are, five tensile tests and four creep tests (performed at a specified reference stress level
of 103 MPa) spanning the representative domains in temperature. Very few repeats were
performed due to the limited amount of available material.

The temperature dependence of the elastic properties were obtained by fitting sim-
ple polynomial functions through the experimental data [14]. The resulting continuous
functions utilized for the present study are taken to be:

E(T) = 114141. 11 — 1.071x10 -7T2 ln(T),	 (38)

r?,,,,,,(T) = 4.539x10-6 + 3.078x10-s exp(7 
T 6)	

(39)

where the units of E(T) are MPa and the temperature, T, is in degrees Celsius. Note,
although the poisson's ratio was shown [14] to have a slight temperature dependence the
parameter was taken here, for convenience, to be temperature independent and remain
at the constant value given in Table 1.

To obtain the actual temperature dependent functional forms for the five inelastic
parameters, r., µ, Bo, R,,, and,3 the following procedure was followed. The first and most
important step was identifying the value of the drag strength as this represents the value
of stress below which only elastic (or reversible) behavior is "observed", i.e., no measur-
able inelastic behavior occurs, and this parameter implicitly influences the determination
of all other parameters. The actual numerical value employed is typically non-unique as
it is dependent upon the definition of inelasticity employed and thus implicitly dependent
upon the sensitivity of the experimental equipment. A typical approach taken to arrive
at a value for K, is to conduct a sequence of creep or relaxation probing tests to determine
the maximum value of stress for which no time dependent behavior (J = 0) is observed.
Such a detailed experimental program was under taken by Castelli et al. [14] to obtain
this time dependent threshold. In the process, however, it was discovered that TIMETAL
21S exhibits both a time and temperature dependent reversible (linear viscoelastic) and
irreversible (viscoplastic) domain 2 . Consequently, an alternative experimental procedure

2Inclusion of this significant time dependent reversible domain along with the irreversible (viscoplas-
tic) domain will be reserved for a later study.
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Figure 2: The upper and lower bounds on the experimentally measured drag stress and
the initial and final correlation values employed.

was conducted to identify the temperature dependent, irreversible domain (F>0) wherein
the viscoplastic inelastic strain component defined in eq. (28) is active. The procedure
explained in [14], consists essentially in conducting a number of extremely slow (e =
0.5x10-s ), strain controlled tensile tests at various temperatures and looking for the
stress value, above which, the stress strain curve deviates from proportionality. In this
way the material itself provides the definition of inelasticity, independent of any a priori
assumption regarding the accumulation of inelastic strain over a specified time. Given
the results of these tests (relative to a conservative and non-conservative definition, i.e.,
the stress at ±15% of the proportional limit strain) the drag stress is seen to possesses a
sigmoidal like functional dependence on temperature, see Fig. 2. The initial temperature
dependent function for n is taken to be:

K(T) = —0.55 +
121.2

(1 + exp((T-333.))
71.2

(40)

and is shown, relative to the experimentally obtained values in Fig. 2.
Given the drag stress as a function of temperature, and the initial temperature de-

pendence of Bo taken to be;

Bo(T) = Bo (To) 	
1.41

[1 — 1.071x10-7T21n(T)]
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and taking the initial temperature dependence of µ to be 

f-^(T) = P(T)

one can then proceed to determine the required p (or function z(T)) and,3 to simulate the
experimental tensile response at the given temperatures. Obtaining these parameters,
one would turn to the creep response at the given temperatures to obtain the magnitude
of thermal recovery (R,,) required to simulate these histories. Given the assumed tem-
perature independence of the exponent n and the elected use of continuous functions, the
effort and compromises required to establish the present set of five temperature depen-
dent inelastic parameters' is minimal in comparison to the effort required to establish the
nine inelastic isothermal parameters at the reference temperature of 650°C. Note that in
the above format, z(T) represents the familiar diffusivity parameter commonly employed
in other viscoplastic models in the literature, e.g., see [7],[10] and [11].

This original set of parameters with the single power-law format for rate sensitivity as
used here, was found to lead to significant rate sensitivity even at low temperatures. This
behavior was not found to be characteristic of this material, however. Therefore, a final
recalibration of rc, p and Bo was undertaken; such that rc was increased to approximately
its upper bound throughout the temperature range, µ was increase by at least three
orders of magnitude at the lower temperatures and Bo was similarly reduced by a factor
of 2 to 6 over the lower temperature regime. The final set of temperature dependent
inelastic parameters for the present nonisothermal extension of the GVIPS model are
given in Table 2, and also shown in Fig. 2.

The corresponding correlation for the tensile response of TIMETAL 21S (at 25, 300,
482, 565 and 650°C given a total strain rate of 8.33x10 -'sec) and short term creep
response (at 482, 565, 650 and 704°C at the reference stress level of 103 MPa) are shown
respectively, in Figs. 3 and 4. As an aside, note that the way in which one chooses to
interpolate between the discrete temperatures given in Table 2 is somewhat arbitrary.
For example, one might select the simplest approach of a piecewise linear interpolation,
particularly in the case of a significant number of known discrete points, or elect to use
continuous functions whenever possible (as done in this study). Note, applying either
approach will achieve similar predictive behavior, however, the use of continuous functions
allows one to analytically determine the temperature dependent parameters and slopes
(see eq. (35)) at all temperatures. The specific material parameter interpolation functions
selected for this study are given in appendix A.

The previously [5] discussed rate dependent tensile response at 650°C over three
orders of magnitude in total strain rate (i.e., e = 8.33x10-', 8.33x10_ 5 and 8.33x10-6 / sec,
compliments of Ashbaugh and Khobaib [151) , short term creep at three stress levels (i.e.,

'This form for µ is assumed as the magnitude of inelastic strain is scaled by the ratio K and the
viscosity has a similar temperature dependence as does K.

'Which accurately simulated the available tensile and creep responses over the given temperature
range.
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f

TIMETAL 21S Temperature, ° C
Constants Units 25 300 482 565 650 704

rc MPa 1034. 772. 310. 33. 5.86 0.75
µ MPa/sec 689. 138. 6.89x10-3 5.86x10-7 5.52x10 -9 7.10x10-12
Bo MPa 6.89x10-5 1.03x10-4 1.72x10-4 4.86x10 -4 5.86x10-4 6.36x10-4
R^ 1/sec 0. 0. 1.679x10-7 1.685x10 -7 1.0x10_

6 6.0x10-5
- 0.001 0. 0. 0. 0. 0.0

Table 2: Nonisothermal material parameters for TIMETAL 21S.
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Figure 3: GVIPS correlation with experimental tensile data at 25, 300, 482, 565 and
650°C, given a total strain rate of 8.33x10 -5/ sec.
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Figure 4: GVIPS correlation with experimental creep data, at the reference stress level
of 15 ksi and three temperatures, 565, 650, and 704°C.

v = 72, 110, and 128 MPa), and relaxation at 103, 238 and 345 MPa, are repeated here
in Figs. 5, 6 and 7, respectively, for completeness. In particular, figure 5 illustrates the
present model's capability to capture the significant rate dependence of this material
at 650°C, whereas figures 6 and 7 demonstrate the accurate stress-level sensitivity of
the model under both creep and relaxation conditions. In addition, note the ability of
the model, in figure 6, to accurately represent both the primary and secondary creep
regions. Clearly, the present model does an excellent job, given the wide variety of
loading conditions and temperature range examined. This is particularly true when
one considers the relatively small number of temperature dependent and independent
material constants required to simulate these histories.

5 GVIPS Predictions

The present nonisothermal GVIPS model, characterized to represent the behavior of
TIMETAL 21S from 23 to 704°C, is now exercised and its predictive capability assessed.
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Figure 5: GVIPS correlation and prediction of strain rate sensitivity at 300 and 650°C;
650 data taken from [13].

5.1 Relaxation Behavior
The assessment begins by considering relaxation tests performed at stress levels above
and below that used (i.e., u = 238 MPa) in the characterization of the model at the
reference temperature of 650°C, see Fig. 7. Clearly, the overall agreement with short
term behavior is quite good with the initial stress rates being accurately predicted at the
higher stress levels and yet diminishing more rapidly than do the actual experimental
values at the lower stress levels. Note that the three starting stress levels in Fig. 7
represent stress levels' ; i) below the apparent yield, ii) within the knee (e.g. 115 to
330 MPa), and iii) near the ultimate stress level of the material (approximately 385
MPa), see Fig. 5. As mentioned earlier, the significant reversible time dependent domain
observed in TIMETAL 21S has not been included in the present model; therefore, it is
not surprising that the relaxation response at the lower stress levels within the apparent
elastic regime are not as accurately represented. Consequently, attention was focused
on the relaxation response of TIMETAL 21S at 300 and 565°C given a considerable
prior total strain history of 1.9 %. The corresponding stress-strain and stress-time test
and model prediction results for these two temperatures are shown in Figs. 8 and 9
respectively. Clearly, both short and mid term behaviors are accurately predicted.

Multistep relaxation tests were performed to document the influence of prior history

5 Given a 5.0 x 10_ 4 total strain rate ramp-up history, see Fig. 5.
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Figure 6: GVIPS correlation (solid lines) of experimental creep data (dotted lines) under
various stress levels at the reference temperature, 650°C.

on the time dependent response of TIMETAL 21S and validate the predictive capability
of the present model. One such test consisted of a two step load sequence comprised
of a 345 MPa stress level, relaxed for 24 hours (i.e., step A) followed by an initial 103
MPa stress level relaxed for approximately one hour (i.e., step B). The experimental stress
versus time response and GVIPS simulation for step B are shown in Fig. 10. To illustrate
the influence of prior history on the relaxation behavior of TIMETAL 21S at 650°C, the
stress-time response for the initial stress level of 103 MPa without prior history (i.e., the
virgin history) given in Fig. 7 has also been included in Fig. 10. Clearly, prior history
has a significant influence on the subsequent response and GVIPS is fully capable of
accurately predicting such influence. Similarly, a three step relaxation load sequence was
investigated as shown in the insert of Fig. 11, wherein step 1 began at a stress level of
103 MPa, step 2 at 238 MPa and step 3 once again at 103 MPa with each constant total
strain hold period lasting approximately 24 hours. The resulting experimental (dotted
lines) and GVIPS (solid lines) stress versus time response for each step is given in Fig.
11. Again, it is clearly demonstrated that the presently characterized GVIPS model is
fully capable of accurately capturing the influence of multistep load histories.
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5.2 Rate Sensitivity
Figure 5 illustrates the rate sensitivity of the present model at 300 °C and at the reference
temperature 650 °C, given a variation in the applied strain rate of three orders of magni-
tude. The accurate correlation of the rate sensitivity at 650 °C is evident and, although
the rate sensitivity is reduced as the temperature is decreased, the present model is still
considered to over-predict the rate sensitivity of TIlbIETAL 21S at lower temperatures.
The difficulties associated with predicting a highly rate sensitive material at elevated
temperatures, as compared with a rate insensitive material at lower temperatures are
believed to be enhanced because of neglecting the significant reversible, time dependent
domain present at elevated temperatures in this material. As stated previously, inclusion
of this feature will be the focus of our future research.

5.3 Cyclic Behavior
Given a total strain rate of 8.33 x 10 -5 / sec, the cyclic stress-strain behavior of the present
nonisothermal model is demonstrated for three temperatures, i.e., 25, 482, and 650°C as
illustrated in Fig. 12 [15]. The cyclic response at 650 is considered to be a correlation
with experiment whereas those at 482 and 25 °C are actual predictions. Obviously, the
room temperature cyclic behavior agrees quite well with experimental data. Furthermore,
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Figure 11: Three step relaxation test at 650°C as described in the insert.

these cyclic results illustrate that the consistent, potential preserving, internal unloading
criterion prevents, over a wide temperature range, the classical abnormalities in the cyclic
stress-strain response associated with nonlinear hardening formulations, even with the
exclusion of any isotropic hardening component.

5.4 Temperature Step Test

In order to examine the significance of the new dynamic thermal recovery term, resulting
from the nonisothermal extension of the GVIPS model, a multiple-step temperature
creep test was conducted. This test began with a 103 MPa creep test at 565°C, followed
by a temperature step, under zero load, to 650°C; whereupon a 103 MPa creep test is
once again conducted. This history was then followed by another temperature step, under
zero load, to 704°C and a subsequent 103 MPa creep test. The resulting experimentally
measured creep strain versus creep time response (dotted line) is shown in Fig. 13
along with the GVIPS prediction (solid line). Comparing the model simulation to the
experimental results it is apparent that the model under-predicts the material creep
response at 565°C by approximately 35 %. This is not surprising, as the correlation of
the 565°C creep response was similarly under predicted, see Fig. 6. However, several
key qualitative features of the temperature step test are represented with reasonable
accuracy, including the re-initiation of primary creep subsequent to the steps, and the
overall total strain accumulation.
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Figure 12: GVIPS simulation of cyclic stress-strain behavior at 25, 482 and 650°C [13].

One interesting aspect of this step test as discussed in Castelli et al. [14] is the in-
creased primary creep rate, over that of the virgin sample, subsequent to the jump in
temperature to 650°C, thus suggesting the need for a dynamic thermal recovery mecha-
nism. Just such a mechanism is naturally provided in the present nonisothermal extension
of the complete potential framework discussed above. To illustrate the impact of the dy-
namic thermal recovery mechanism, the identical history as that described above was
conducted (and is shown by a dashed line in Fig. 13) but with the removal of the Bi,T
term in the internal constitutive rate equation, i.e., eq. (31). Although, for the present
characterization and rate of thermal loading the influence was minimal, the inclusion of
such a mechanism (as required by the potential structure) does provide an increase in
the subsequent creep response. An entire study devoted to examining the importance
of this new dynamic thermal recovery mechanism and its sensitivity to characterization
and thermal loading rate will be the focus of future research.

5.5 TXM Test
As a final verification test a thermomechanical deformation (TMD) test was conducted,
which involved a strain controlled (i.e., e = 8.33x10-4/ sec) tensile test at 300°C to 2.0%
total strain, followed by an unload to zero load and then a reload under stress control
(i.e., & = 68.95 MPa / sec) to 103 MPa. Holding the load at 103 MPa, the temperature
was then increased at a rate of 1 °C /sec to 650°C; whereupon the load and temperature
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Figure 13: Prediction of multi-step temperature creep test, i.e., 565 to 650 to 704°C,
with and without the new dyanmic thermal recovery term.

were held fixed at their respective magnitudes for 8 hours. The resulting experimentally
obtained stress-total strain and total strain versus time responses and model simulations
are illustrated in Figs. 14, 15 and 16. Here, the thermal strain component was zeroed
at the initial test temperature of 300°C. Examining Fig. 14, it is obvious that the prior
tensile overload is over-predicted, thus one might question the ability of the model to
accurately predict the subsequent creep behavior. Part of the discrepancy in the initial
tensile response can be attributed to the fact that the model exhibits a notable positive
strain rate sensitivity at 300°C whereas the experimental data suggests a minimal strain
rate dependence. Consequently, given that the characterization of the present model was
performed at a strain rate of 8.333x10- '/ sec and the verification test was conducted at
8.33x10- '/ sec, one would anticipate the present over-prediction of the tensile response.
Further discrepancies can also be attributed to material variability' and experimental
scatter. Figures 15 and 16 show the comparison of the experimental and GVIPS simu-
lation of the subsequent 103 MPa TMD response. Again, the simulation under predicts
the experimental results. Realizing that the experiment performed is actually a constant
load test and not a constant stress creep test, as is the simulation, another simulation
was conducted wherein the applied stress was increased by approximately 7% to account
for the maximum change in cross sectional area of the test coupon. As a result, the

6The current TMD test coupon consisted of 12 plies, whereas all previous tensile test data were
obtained from coupons constructed with 5 plies.
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Figure 14: Prediction of stress-strain response for a thermomechanical deformation test.

accumulation of predicted inelastic strain was increased, thus providing an upper bound
on the prediction, as shown by the dashed line in Fig. 16. Clearly, even with the inclu-
sion of this additional increase in stress, the present characterization of the model still
significantly under predicted the experimental results.

Examination of Fig. 15, which is an amplification of the transient temperature regime
occurring within the first 600 seconds of the test provides some additional insight into
the possible cause for the under-prediction of the present GVIPS model. For example,
focusing upon the transient temperature region, one observes a nonlinear accumulation
of strain starting at the 200 second mark and continuing on (but at a different rate)
past the point at which the temperature becomes constant at 650°C. This accumulation
equals approximately 0.2% strain, which is precisely the amount of deviation between the
simulation and the experimental observation at 600 seconds into the test; this suggests
that the inelasticity predicted by the model at low stress levels and temperatures below
650°C is insufficient. This conclusion is further supported by the previous correlations
shown in Fig. 4 where the model under-predicted the creep strain at 565 and 482°C by
an increasing amount, as the temperature was decreased. Furthermore, the neglecting
of the time dependent, reversible domain, as discussed previously may also contribute
significantly to this nonlinear accumulation of strain during the temperature transient.
Such areas will be the focus of future research.
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6 S ummary
A fully associative, multiaxial, nonisothermal, nonlinear kinematic hardening viscoplastic
model has been presented. It contains three internal state variables (two scalars and
one tensor) and both thermal and strain-induced recovery mechanisms. The two, non-
evolving (yet temperature dependent), scalar internal state variables are associated with
the dislocation density and are defined as the drag and yield stress. The evolving tensorial
variable known as the internal (or back) stress is a second order, traceless, symmetric
tensor and is associated with the dislocation substructure. A unique aspect of the present
model is the inclusion of nonlinear hardening through the use of a compliance operator,
derived from the Gibb's potential, in the evolution law for the back stress. This nonlinear
tensorial operator is significant in that it allows both the flow and evolutionary laws to
be fully associative (and therefore easily integrated), greatly influences the multiaxial
response under non-proportional loading paths and in the case of nonisothermal histories,
introduces an instantaneous thermal softening mechanism proportional to the rate of
change in temperature. The resulting nonisothermal unified viscoplastic model was then
characterized for the titanium based alloy TIMETAL 21S from room temperature to
704°C. Results illustrated the good overall correlation and predictive capabilities of the
model for a wide range of mechanical and thermal loading conditions.
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c6 = -4.006x10-7

C7 = 722.0

ds = 1.156x10-7
es = -1.196x10-9
d7 = 11.597

APPENDIX A: Interpolation Functions

Here, we list the functions and applicable temperature ranges used in this study to
describe the five temperature dependent inelastic material parameters identified at dis-
crete temperatures in Table 2. Note, although the magnitudes of the functions describing
any one parameter are continuous across temperature boundaries, no attempt was made
to ensure continuity of the slopes. This may be an extremely important fact depending
upon the integration scheme utilized, and should be cautiously considered.
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Temperature Range, °C
T < 565

T > 565

T < 565

T > 565

T < 482

T > 482

T > 482

300 < T < 482

T < 300

T < 100

100 < T < 200

T > 200

where N = 5.52x10 -9 and 4 = 5.86. The above interpolation constants are:
aI = -1027.4 bI = 2118.5 cI = 566.04057	 dl = -154.9935
a2 = 254.76 b2 = -1.997x107 c2 = 4.04x108
a3 = 20.197653 b3 = 2.4519076x10- 3 c3 = -3.41797x10-6
a4 = -0.22876195 b4 = 3961.1386 c4 = 397.89176	 d4 = -31.582681
as = 5.782x10_

5
b5 = 1.003x10 -5 c5 = -197.95617

as = -5.430x10 -2 b6 = 3.603x10-4

	

a7 = 1.670x10 -7	b7 = 1.0381x10-4

	

a8 = 1.670x10-7	b8 = 5.068x10 -I2
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